The medaka rs-3 locus required for scale development encodes ectodysplasin-A receptor
نویسندگان
چکیده
The bodies of most teleost fish species are covered with specialized subepithelial structures known as scales. The scale is an epithelial appendage that differentiates from the dermal mesenchyme. Mammals, on the other hand, have no scales, but instead their bodies are covered with hair. Although their appearances are quite different, scales and hair can be considered structurally similar in that both of them are epithelial appendages distributed over the body surface in an orderly pattern. This analogy suggests that they may have the same evolutionary origin. But, to date, no molecular evidence has been presented that links scales and hair. A mutation at the rs-3 locus of medaka (Oryzias latipes) leads to almost complete loss of scales. We demonstrated that the rs-3 locus encodes ectodysplasin-A receptor (EDAR), which is required for the initiation of hair development in mammals. We identified a novel transposon inserted in the first intron of EDAR, which causes aberrant splicing. This work shows that EDAR is required for scale development in fish and suggests that it is an evolutionarily conserved molecule that is required for the development of epithelial appendages in vertebrates.
منابع مشابه
Scale and tooth phenotypes in medaka with a mutated ectodysplasin-A receptor: implications for the evolutionary origin of oral and pharyngeal teeth.
Ectodermal contribution to the induction of pharyngeal teeth that form in the endodermal territory of the oropharyngeal cavity in some teleost fishes has been a matter of considerable debate. To determine the role of ectodermal cell signaling in scale and tooth formation and thereby to gain insights in evolutionary origin of teeth, we analyzed scales and teeth in rs-3 medaka mutants characteriz...
متن کاملFish scale development: Hair today, teeth and scales yesterday?
A group of genes in the tumour necrosis factor signalling pathway are mutated in humans and mice with ectodermal dysplasias--a failure of hair and tooth development. A mutation has now been identified in one of these genes, ectodysplasin-A receptor, in the teleost fish Medaka, that results in a failure of scale formation.
متن کاملThe Tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains.
Mouse Tabby (Ta) and X chromosome-linked human EDA share the features of hypoplastic hair, teeth, and eccrine sweat glands. We have cloned the Ta gene and find it to be homologous to the EDA gene. The gene is altered in two Ta alleles with a point mutation or a deletion. The gene is expressed in developing teeth and epidermis; no expression is seen in corresponding tissues from Ta mice. Ta and ...
متن کاملIdentification and characterization of two distinct GnRH receptor subtypes in a teleost, the medaka Oryzias latipes.
We report the identification and characterization of two distinct GnRH receptor (GnRH-R) subtypes, designated GnRH-R1 and GnRH-R2, in a model teleost, the medaka Oryzias latipes. These seven-transmembrane receptors of the medaka contain a cytoplasmic C-terminal tail, which has been found in all other nonmammalian GnRH-Rs cloned to date. The GnRH-R1 gene is composed of three exons separated by t...
متن کاملEctodysplasin is a collagenous trimeric type II membrane protein with a tumor necrosis factor-like domain and co-localizes with cytoskeletal structures at lateral and apical surfaces of cells.
Anhidrotic ectodermal dysplasia (EDA) is a human genetic disorder of impaired ectodermal appendage development. The EDA gene encodes isoforms of a novel transmembrane protein, ectodysplasin. The sequence of the longest isoform includes an interrupted collagenous domain of 19 Gly-X-Y repeats and a motif conserved in the tumor necrosis factor (TNF)-related ligand family. In order to understand be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 11 شماره
صفحات -
تاریخ انتشار 2001